【用語解説】線形回帰とは?

線形回帰で簡単予測! 機械学習入門に最適。広告効果測定や不動産価格予測など、様々な場面で活用できます。少ないデータでも高精度な予測が可能です。 AI_用語辞典
この記事は約3分で読めます。

線形回帰(せんけいかいき)とは、数値データの予測に使う簡単な手法です。

広告費と売上の関係のように、二つの数値の関係を直線で表し、将来の値を予測します。

機械学習の入門として、線形回帰について解説いたします。

線形回帰の概要

線形回帰(せんけいかいき)は、機械学習における基本的な手法の一つで、数値データの予測に使用されます。
線形回帰では、「特徴量(説明変数)」と呼ばれるデータの変数を使って、「ターゲット(目的変数)」の値を予測します。
たとえば、広告費用(特徴量)と売上(ターゲット)の関係を予測する際に、線形回帰を使うことができます。

線形回帰の仕組み

線形回帰の基本的な考えは、「直線(一次関数)」をデータにフィットさせることです。
これは、入力変数(x)の変化に伴う出力変数(y)の変化を直線的に表現しようとするものです。
数学的には次のように表されます。

 y = ax + b 

ここで、aは直線の傾き、bはy軸との交点です。
この式を使って、入力変数xに基づいて出力変数yを予測します。

線形回帰の応用例

  • 不動産価格予測
    例えば、家の広さや場所を特徴量として、家の価格を予測できます。

  • 売上予測
    広告費や販売キャンペーンの効果を分析し、売上の変動を予測できます。

線形回帰と他の手法の比較

線形回帰はシンプルで理解しやすく、計算も効率的なため、機械学習の入門として適しています。
しかし、すべてのデータが直線的な関係を持っているわけではないため、複雑なデータセットには他の手法が必要です。
以下は、線形回帰と他の一般的な機械学習手法との比較です。

  1. 線形回帰 vs ロジスティック回帰
    • 線形回帰は連続値(たとえば価格や温度など)の予測に使われます。
    • 一方、ロジスティック回帰は二値分類(メールがスパムかどうかなど)に使われます。
  2. 線形回帰 vs 決定木
    • 線形回帰はデータに直線をフィットさせますが、決定木はデータを分岐して予測を行います。
      非線形な関係が多い場合は、決定木の方が効果的です。
  3. 線形回帰 vs ニューラルネットワーク
    • ニューラルネットワークは複雑なデータを扱える強力なモデルですが、計算が重く、解釈が難しいことがあります。
      線形回帰はシンプルで迅速に解釈可能ですが、複雑なパターンを捉えることは苦手です。

線形回帰のメリットとデメリット

メリット

  • 計算が速く、扱いやすい。
  • 結果の解釈が容易。
  • 少ないデータでも精度の高い予測が可能。

デメリット

  • 複雑な非線形データには対応できない。
  • 外れ値の影響を受けやすい。

まとめ

線形回帰は、機械学習の中でも基本的で広く使われている手法です。

シンプルな予測モデルを作りたい場合や、データの傾向を把握する際に非常に有用です。

しかし、データの性質によっては、より複雑な手法が必要になることもあります。

AI初心者が最初に取り組むべき手法として、線形回帰は理解しやすく、実践にもすぐに役立つでしょう。

↓団体向けの総合的な学習機会に興味がある方はこちら↓

この記事を書いた人
星野クォンタ

星野クォンタです😊AIとDXの深層にハマってるおしゃべり好きなAIオタクです🚀🔍

星野クォンタをフォローする
AI_用語辞典
シェアする
星野クォンタをフォローする
AILANDs